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1 OTrP Overview

1.1 Normative docs

* OTrP draft RFC

* globalplatform GPD TMF OTrP profile (public review v0.0.0.21)
« JWS RFC7515

 JWE RFC7516

e JWK RFC7517

« JWA RFC7518

1.2 Working overview diagram
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https://datatracker.ietf.org/doc/draft-ietf-teep-opentrustprotocol/?include_text=1
https://globalplatform.org/wp-content/uploads/2018/11/GPD_TMF_OTrP_Profile_v0.0.0.21_PublicReview.pdf
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7517
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1.3 TA Encryption 3

OTrP proto provides additional features to enhance existing GlobalPlatform based TEE. It is developed on top of
OP-TEE.

1. Capability to have encrypted TAs which could contain security sensitive binaries and data.

2. Enabling TAs being signed by different TA providers, not only one valid signing key defined at TEE build-time.
Details of achieving the two features.

» To solve TA encryption, they are encrypted by a remote provider (the "Trusted Services Manager” or TSM)
using a public key held by the targeted device specifically, before transmission to the device. They may be
stored with the encryption intact and the decrypted and confirmed on insertion.

» So one provider can't snoop the TAs of another, there are separate keypairs derived on the device per provider
(held in a Security Domiain (SD) per- "Service Provider” (SP)

* A new TA insertion method is implied on the TEE-side that decrypts "installed” TAs and inserts them after
confirming decryption, without checking for the old build-time trusted signature.

» Agranular PKl is defined using X.509 certs that allows the remote Trusted Services Manager (TSM) to confirm
if it is talking to something with access a TEE certificate on the other side. The TEE side holds a list of TSM
certifcates it is willing to trust and can confirm the packets it is receiving came from something with access to
one of those.

» The client application initiates most activities, and includes a library that deals with network connectivity.
However almost all of the traffic passing through the client application and the OTrP broker has a payload
encrypted with keys unavailable to either the client application or the OTrP broker. The Trusted Services
Manager (TAM) and the TEE side are the two endpoints for the encrypted communication that have the
necessary keys to see plaintext.

» Network-traversing packets are placed in a "Flattened JSON” JWS signed wrapper. JWS payload that fails
the signature check is discarded without being processed, making it difficult to trigger bugs or corner cases
by fuzzing type attacks or targeted hacks like buffer overflows.

1.3 TA Encryption
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1.4 OTrP PKI
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OTrP Service Provider PKI
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Step 1: Run otrp-kickstart-pki.sh as described below

Setting up OTrP PKI

1.5 OTrP sources layout

OTrP TEE PKI
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OTrP Optional Trusted Firmware PKI
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Subdirectory Function

teep-broker-app | Test REE client application, uses libteep to fetch an encrypted test TA from TAM and install it

sp-hello-app Tiny REE client that just opens a session to the test TA if it is installed successfully

libteep REE shared library that can do http(s) requests to the TAM and can forward results to teep-
agent-ta

pki PKI created by scripts/otrp-kickstart-pki.sh

teep-agent-ta TA implementing OTrP on TEE side

sp-hello-ta Tiny TA that is copied to the fake TAM so it can be encrypted and sent to the TEE via teep-
broker-app

1.6 OTrP test flow

Sy #un: #
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1.6 OTrP test flow
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Start the fake TAM on the remote server
# node ./tiny-tam/app.js

1.6.1

ifconfig eth0 192.168.2.22/24 up

echo "nameserver 192.168.2.1" > /etc/resolv.conf

echo "192.168.2.236 buddy.home.your-server" > /etc/hosts
teep-broker—-app --tamurl http://buddy.home.your-server:3000

Install Test TA flow

4 W o He

1.6.2 Confirm Test TA is installed

# sp-hello-app

START: sp-hello-ap

I/TA: TA_InvokeCommandEntryPoint:
I/TA: sp-hello-ta: Hello IETF TEEP!
sp-hello_app: done
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1.6.3 Delete Test TA flow

# teep-broker-app --tamurl http://buddy.home.your-server:3000 -d

1.6.4 Confirm Test TA deleted

# sp-hello-app

START: sp-hello-app

ERR [649] TEES:load.-ta:225: TA not found

E/TC:? 0 tee.ta_open.session:540 init session failed Oxffff0008
Could not open session with TA

2 Notes on PKI config

2.1 One-time PKI setup

You can configure the root certs, intermediate CA certs and some selected demo certs signed by the intermediate
CA certs by running this script.

It also converts some PEM certs and keys to JWK for later tests (and hence needs the path to the libwebsockets

conversion tools)
$ LWS_BUILD.DIR=/path/to/libwebsockets/build ./scripts/otrp-kickstart-pki.sh

2.2 PKl layout

There are three cerificate chains laid out the same way, for "Service Provider” (SP), "Trusted Application Manager”
(TAM) and "Trusted Execution Environment” (TEE).

For SP as an example:
. /pki
sp
sp-rootca
sp-rootca-ec-key.pem
sp-rootca-ec-cert.pem
sp-ca
sp-ca—-l-ec—key.pem
sp-ca-l-ec-cert.pem
sp
sp-ybank-rsa-key.pem
sp-ybank-rsa-cert.pem
sp-ybank-rsa-cert-plus—-intermediate-cert.pem
sp-xbank-rsa-cert.pem
sp—xbank-rsa-key.pem
sp-xbank-rsa-cert-plus-intermediate-cert.pem

The pki for TAM (./pki/tam...) and TEE (./pki/tee/...) is the same except signed certificates are produced for "mytam”
and "mytee” instead of the fictional bank SPs.

Root keys are produced for both rsa and ec, and which to use can be selected when creating the intermediate
CAs. The kickstart script uses ec keys for the rootca to sign the intermediate CA, and 4096-bit RSA keys for the
intermediate CA to sign the final certificates.

For the final signed certs, the normal certificate with the public key is produced, butalsoa . . . —cert-plus—-intermediate-cer
pem bundle that contains both the normal signed cert and a copy of the intermediate CA cert.
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2.3 Converting and using JWK/E/S manually 7

2.3 Converting and using JWK/E/S manually

A test script is provided which uses the PKIl infrastructure to encrypt, sign and "send” a "TA” from the "TAM side” to
the "TEE side”, where it's verified for signature and decrypted and confirmed to be unchanged from the original.

This flow has important deviations from OTrP...

* itruns on a PC not the TEE and TAM server
* it doesn't do any communication

« the JWE and JWS are stock RFC without OTrP extensions, it doesn't attempt to make correctly formed OTrP
request or response packets just standard JWE / JWS

« it deals with 50KiB of random instead of a real TA and doesn't try to use the TA in a TEE

« there are no test vectors available, so it decrypts its own encryption and verifies its own signatures. So there
are no guarantees the crypto flow is interoperable yet.

... however...

* it's using exactly the same libwebsockets JW=x code as the TEE

* it's using exactly the same generic crypto code as the TEE

* it's using exactly the same mbedtls crypto backend as the TEE

* it's using real JWS and JWS crypto agility alg / enc

* it's using the actual ECDH and RSA / AES crypto as used by OTrP

« it's using the actual PKI infrastructure with the actual EC and RSA root CAs, intermediate CAs and certs for
TAM and TEE

* it's using real cert keys converted to JWK on the fly for the correct crypto flow

... so it proves a small but significant part of one flow around the certs and crypto.

2.3.1 Step 1: build libwebsockets with mbedtls

Build libwebsockets on your build machine and to build the minimal examples.

You should install your either your distro mbedtls first (-DLWS_WITH_.MBEDTLS=1)

Distro Package
Fedora | mbedtls-devel
Ubuntu | libmbedtls-dev

or distro OpenSSL (-DLWS_WITH_.MBEDTLS=0)

Distro Package
Fedora | openssl-devel
Ubuntu | libssl-dev
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make -j12 && sudo make install
sudo ldconfig

$ git clone https://libwebsockets.org/repo/libwebsockets

$ cd libwebsockets

$ mkdir build

$ cd build

$ cmake .. -DLWS_.WITH.JOSE=1 -DLWS_-WITH-MBEDTLS=1 -DLWS_-WITH-MINIMAL_EXAMPLES=1
S

S

This will build but not install several dozen example applications in ./build/bin, which are able to perform operations
from the commandline on x.509 PEM, JWKSs, JWS (signing) and JWE (en/decrypt). These can be used to synthesize
the core operations around, eg, encrypting and signing a TA and verifying and decrypting it, using the PKI created
above.

2.3.2 Step 2: run the pki kickstart script

$ LWS_BUILD.DIR=/path/to/libwebsockets/build ./scripts/otrp-kickstart-pki.sh

This recreates all the PKI, root certs and keys etc... running this again will mean you will have to rebuild everything
and update tiny-tam copies of the crypto etc using the new pki.

2.3.3 Step 3: run the test script

Run the test script like this
$ LWS_-BUILD.DIR=/path/to/libwebsockets/build ./scripts/otrp-test.sh

You should see output like this

[2019/01/03 19:13:10:0065] USER: LWS X509 api example

[2019/01/03 19:13:10:0067] NOTICE: lws_x509_public.to.-jwk: RSA key
[2019/01/03 19:13:10:0123] NOTICE: Issuing Cert + Private JWK on stdout
[2019/01/03 19:13:10:0123] NOTICE: main: OK

[2019/01/03 19:13:10:0135]) USER: LWS X509 api example

[2019/01/03 19:13:10:0137] NOTICE: lws_x509_public_.to.jwk: RSA key
[2019/01/03 19:13:10:0137] NOTICE: Issuing Cert Public JWK on stdout
[2019/01/03 19:13:10:0138] NOTICE: main: OK

[2019/01/03 19:13:10:0243] USER: LWS JWK example

[2019/01/03 19:13:10:0244] NOTICE: lws_jwk_generate: generating 4096 bit RSA key
[2019/01/03 19:13:10:6649] USER: LWS JWE example tool

[2019/01/03 19:13:10:6703] USER: LWS JWS example tool

[2019/01/03 19:13:10:6942] USER: LWS JWS example tool

[2019/01/03 19:13:10:6989] NOTICE: VALID

[2019/01/03 19:13:10:7002] USER: LWS JWE example tool

Decrypted TA matches original

Running ot rp-test . sh doesn't change the pki, so you can run it as many times as you like.
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