OTrP proto

National Institute of Advanced Industrial Science and Technology

2019-09-10

1 OTrP Overview

1 OTrP Overview
1.1 Normative doCs e e e e e e e
1.2 Working overview diagram L o e e e e e e e
1.3 TAENCryption e e e e e e
1TAO0TIP PKIL. . . o e
1.5 0TrP sources layout L e e e e
1.6 0TrPtestflow o e
1.6.1Install Test TAflow L L e
1.6.2 Confirm Test TAisinstalled
1.6.3 Delete Test TAflow
1.6.4 Confirm Test TAdeleted

2 Notes on PKI config
2.1 0ne-time PKISetup o o e e e
22PKllayout
2.3 Converting and using JWK/E/Smanually
2.3.1 Step 1: build libwebsockets with mbedtls L.
2.3.2 Step 2: run the pki kickstart scripto
233 Step 3:runthetestscript

1 OTrP Overview

1.1 Normative docs

* OTrP draft RFC

* globalplatform GPD TMF OTrP profile (public review v0.0.0.21)
« JWS RFC7515

 JWE RFC7516

e JWK RFC7517

« JWA RFC7518

1.2 Working overview diagram

U HUN: #

—_ -k

o o o1 o0 A A DN W

0 00 N N o o o

Copyright © National Institute of Advanced Industrial Science and Technology (AIST)

https://datatracker.ietf.org/doc/draft-ietf-teep-opentrustprotocol/?include_text=1
https://globalplatform.org/wp-content/uploads/2018/11/GPD_TMF_OTrP_Profile_v0.0.0.21_PublicReview.pdf
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7518

OTrP Overview

Service Provider

OCSP cert
validation

server \

Peer
certificate
secure cache

TEE ri

TeE G
ﬁgum

TEE rpt

TEE;@
mydevTee

WS to TAM is
usually signed by
the TEE cert privkey

JWS to TEE is
signed by the
TAM cert privkey

Xbank

tFR PRASEY

Trusted Services
Manager

prowder

O CERT FRIVREY

Ybank
Service Provider

Any service provider
with a certificate
signed by a TSM-trusted
SP rool CA can use the
TSM to install their TAs
on any device that

o CERT PRIVEEY

trusts the TSM.
Security v
Domain Xbank
50 name
I Trusted : Device's 50
E SP root : 1»“»(Pubkey
s CAs ¢
Trustedli Security .,
P Pwens th Domaln Ybank
H B e rTOPE, so e
. Device's 5D |
| 1 AlK Pubkey |
Mostly OTrP JSON

Encrypted by
TEE or TAM with
per-SD derived
private (from TEE), or
public (from TAM)
AIK key.

R . . The SP-AIK keypair is unique to
Client Appllcatlons OTrP Broker (agent) each security domain, and is
_ T randomly created by the
L TAM provider cathe) device TEE when a
L TAM + broker ‘Em» Thin TEE proxy new Security Domain appears
o helper library no network onthe device. The private
part of the keypair never
LI—I leaves the device.
y o) Device TEE Security Domain Abofk
—_— SDnhame SPid | Secure
> | - Owming TAM tamid | Storage
o wk ., BA
I I I g E-T”-'s‘re.d-i ce:c;‘lec;te :;: -
: TA'EK:N : cache pair -
(V) : :
D 5 1 Secur\ty Domain \lec]]‘(
) : [v st
q) (CERT PRIVEY m | WK SP cert
i Re iz

Copyright © National Institute of Advanced Industrial Science and Technology (AIST)

1.3 TA Encryption 3

OTrP proto provides additional features to enhance existing GlobalPlatform based TEE. It is developed on top of
OP-TEE.

1. Capability to have encrypted TAs which could contain security sensitive binaries and data.

2. Enabling TAs being signed by different TA providers, not only one valid signing key defined at TEE build-time.
Details of achieving the two features.

» To solve TA encryption, they are encrypted by a remote provider (the "Trusted Services Manager” or TSM)
using a public key held by the targeted device specifically, before transmission to the device. They may be
stored with the encryption intact and the decrypted and confirmed on insertion.

» So one provider can't snoop the TAs of another, there are separate keypairs derived on the device per provider
(held in a Security Domiain (SD) per- "Service Provider” (SP)

* A new TA insertion method is implied on the TEE-side that decrypts "installed” TAs and inserts them after
confirming decryption, without checking for the old build-time trusted signature.

» Agranular PKl is defined using X.509 certs that allows the remote Trusted Services Manager (TSM) to confirm
if it is talking to something with access a TEE certificate on the other side. The TEE side holds a list of TSM
certifcates it is willing to trust and can confirm the packets it is receiving came from something with access to
one of those.

» The client application initiates most activities, and includes a library that deals with network connectivity.
However almost all of the traffic passing through the client application and the OTrP broker has a payload
encrypted with keys unavailable to either the client application or the OTrP broker. The Trusted Services
Manager (TAM) and the TEE side are the two endpoints for the encrypted communication that have the
necessary keys to see plaintext.

» Network-traversing packets are placed in a "Flattened JSON” JWS signed wrapper. JWS payload that fails
the signature check is discarded without being processed, making it difficult to trigger bugs or corner cases
by fuzzing type attacks or targeted hacks like buffer overflows.

1.3 TA Encryption

@ yn#yn: #

TAs in transit P L TS

Encrypted using

’

[|

|

|

|}
S}-:gr_}idmuzin% / destination
e o S Security Domain)
SP-AIK pubkey

which is signed using ‘

an intermediate CA S j = ‘ e
signed using the . \! P (requires destination

TAM root CA “NM/S Slgnat\)'f Security Domain SP-AIK
trusted by TEE Smm- privkey to decrypt)

Copyright © National Institute of Advanced Industrial Science and Technology (AIST)

1.4 OTrP PKI

U: #U0: #

OTrP Service Provider PKI

Service
Provider :

Y
Mever leaves safe ™ ™

TSM halds a copyof & ;
the root public certificate in ..., ..

order to trust certs issued
by a SP sig CA signed by it.

OTrP TSF/ TAM PKI

TAM ¢
Provider : |

Never leaves safe” n.,..q”

TEE holds a copy of
the root public certificate n"
order to trust certs issued
by a TAM CA signed by it,

Step 1: Run otrp-kickstart-pki.sh as described below

Setting up OTrP PKI

1.5 OTrP sources layout

OTrP TEE PKI

H “‘

TEE

Provider '_"'

Mever leaves safc
\F TAM thsamp,ncf o—-_

the root public certificate in ™.,
order to frust certs issued
by a TEE CA signed by it,

OTrP Optional Trusted Firmware PKI

Factory

Never leaves safe ... n
F/ TAM holds copy of 3, @ £

the root public certificate in ...
arder 1o 1rust cens issued
Loy & TEE CA signed by it.

Subdirectory Function

teep-broker-app | Test REE client application, uses libteep to fetch an encrypted test TA from TAM and install it

sp-hello-app Tiny REE client that just opens a session to the test TA if it is installed successfully

libteep REE shared library that can do http(s) requests to the TAM and can forward results to teep-
agent-ta

pki PKI created by scripts/otrp-kickstart-pki.sh

teep-agent-ta TA implementing OTrP on TEE side

sp-hello-ta Tiny TA that is copied to the fake TAM so it can be encrypted and sent to the TEE via teep-
broker-app

1.6 OTrP test flow

Sy #un: #

Copyright © National Institute of Advanced Industrial Science and Technology (AIST)

1.6 OTrP test flow

node fake-tam

Development stage limitations

Remote
TAM Provider
Server

ta-aist-test

11 Only use pure [WS /WEJSON, * Canfirms W* crypio statk as used
notfull OTeP JSON by Qe

2) TAM Service Provider is a stub = Canfirns network, PRI and [W*
only @pable to entrypt and sign crypto apis in bioth diredtiens.
the Th and pass it over the network

@ aist-otrp-testapp uses
libaistotrp to do an http
GET to the remote
fake-tam

node.js

31 0nly "Th install* flow using * Confirms Sewure TA install and
simplified OTeP request crypto f network path s used by OTrP

4) Some certificates and heys placed = Canfirms crypio wsing real cents
direcilyinto code and kays from Pl

@ fake-tam encrypts and signs
the test TA using the TEE
public key and its own cert
private key, and returns it on http

/" aist-otrp-testapp
aist-otrp-test-ta-client
L me lws mbedtls
LI_I WE with network with netwark i
X |libaistotrp i
@ aist. i ® minimal dient
Jdev/tee(justtoconfirm
forwards the encrypted a
. ta-aist-test
Ly) really installed
OP-TEE OS ta-aist-otrp

e lws mbedtls .

T o neteart nonetwork ta-aist-test
E.-“".Eummand Parser R

UuIbD

¢
o

Secure World

DEVICE

@ ta-aist-otrp verifies and decrypys the
TA, and saves into secure storage

Start the fake TAM on the remote server
node ./tiny-tam/app.js

1.6.1

ifconfig eth0 192.168.2.22/24 up

echo "nameserver 192.168.2.1" > /etc/resolv.conf

echo "192.168.2.236 buddy.home.your-server" > /etc/hosts
teep-broker—-app --tamurl http://buddy.home.your-server:3000

Install Test TA flow

4 W o He

1.6.2 Confirm Test TA is installed

sp-hello-app

START: sp-hello-ap

I/TA: TA_InvokeCommandEntryPoint:
I/TA: sp-hello-ta: Hello IETF TEEP!
sp-hello_app: done

Copyright © National Institute of Advanced Industrial Science and Technology (AIST)

1.6.3 Delete Test TA flow

teep-broker-app --tamurl http://buddy.home.your-server:3000 -d

1.6.4 Confirm Test TA deleted

sp-hello-app

START: sp-hello-app

ERR [649] TEES:load.-ta:225: TA not found

E/TC:? 0 tee.ta_open.session:540 init session failed Oxffff0008
Could not open session with TA

2 Notes on PKI config

2.1 One-time PKI setup

You can configure the root certs, intermediate CA certs and some selected demo certs signed by the intermediate
CA certs by running this script.

It also converts some PEM certs and keys to JWK for later tests (and hence needs the path to the libwebsockets

conversion tools)
$ LWS_BUILD.DIR=/path/to/libwebsockets/build ./scripts/otrp-kickstart-pki.sh

2.2 PKl layout

There are three cerificate chains laid out the same way, for "Service Provider” (SP), "Trusted Application Manager”
(TAM) and "Trusted Execution Environment” (TEE).

For SP as an example:
. /pki
sp
sp-rootca
sp-rootca-ec-key.pem
sp-rootca-ec-cert.pem
sp-ca
sp-ca—-l-ec—key.pem
sp-ca-l-ec-cert.pem
sp
sp-ybank-rsa-key.pem
sp-ybank-rsa-cert.pem
sp-ybank-rsa-cert-plus—-intermediate-cert.pem
sp-xbank-rsa-cert.pem
sp—xbank-rsa-key.pem
sp-xbank-rsa-cert-plus-intermediate-cert.pem

The pki for TAM (./pki/tam...) and TEE (./pki/tee/...) is the same except signed certificates are produced for "mytam”
and "mytee” instead of the fictional bank SPs.

Root keys are produced for both rsa and ec, and which to use can be selected when creating the intermediate
CAs. The kickstart script uses ec keys for the rootca to sign the intermediate CA, and 4096-bit RSA keys for the
intermediate CA to sign the final certificates.

For the final signed certs, the normal certificate with the public key is produced, butalsoa . . . —cert-plus—-intermediate-cer
pem bundle that contains both the normal signed cert and a copy of the intermediate CA cert.

Copyright © National Institute of Advanced Industrial Science and Technology (AIST)

2.3 Converting and using JWK/E/S manually 7

2.3 Converting and using JWK/E/S manually

A test script is provided which uses the PKIl infrastructure to encrypt, sign and "send” a "TA” from the "TAM side” to
the "TEE side”, where it's verified for signature and decrypted and confirmed to be unchanged from the original.

This flow has important deviations from OTrP...

* itruns on a PC not the TEE and TAM server
* it doesn't do any communication

« the JWE and JWS are stock RFC without OTrP extensions, it doesn't attempt to make correctly formed OTrP
request or response packets just standard JWE / JWS

« it deals with 50KiB of random instead of a real TA and doesn't try to use the TA in a TEE

« there are no test vectors available, so it decrypts its own encryption and verifies its own signatures. So there
are no guarantees the crypto flow is interoperable yet.

... however...

* it's using exactly the same libwebsockets JW=x code as the TEE

* it's using exactly the same generic crypto code as the TEE

* it's using exactly the same mbedtls crypto backend as the TEE

* it's using real JWS and JWS crypto agility alg / enc

* it's using the actual ECDH and RSA / AES crypto as used by OTrP

« it's using the actual PKI infrastructure with the actual EC and RSA root CAs, intermediate CAs and certs for
TAM and TEE

* it's using real cert keys converted to JWK on the fly for the correct crypto flow

... so it proves a small but significant part of one flow around the certs and crypto.

2.3.1 Step 1: build libwebsockets with mbedtls

Build libwebsockets on your build machine and to build the minimal examples.

You should install your either your distro mbedtls first (-DLWS_WITH_.MBEDTLS=1)

Distro Package
Fedora | mbedtls-devel
Ubuntu | libmbedtls-dev

or distro OpenSSL (-DLWS_WITH_.MBEDTLS=0)

Distro Package
Fedora | openssl-devel
Ubuntu | libssl-dev

Copyright © National Institute of Advanced Industrial Science and Technology (AIST)

make -j12 && sudo make install
sudo ldconfig

$ git clone https://libwebsockets.org/repo/libwebsockets

$ cd libwebsockets

$ mkdir build

$ cd build

$ cmake .. -DLWS_.WITH.JOSE=1 -DLWS_-WITH-MBEDTLS=1 -DLWS_-WITH-MINIMAL_EXAMPLES=1
S

S

This will build but not install several dozen example applications in ./build/bin, which are able to perform operations
from the commandline on x.509 PEM, JWKSs, JWS (signing) and JWE (en/decrypt). These can be used to synthesize
the core operations around, eg, encrypting and signing a TA and verifying and decrypting it, using the PKI created
above.

2.3.2 Step 2: run the pki kickstart script

$ LWS_BUILD.DIR=/path/to/libwebsockets/build ./scripts/otrp-kickstart-pki.sh

This recreates all the PKI, root certs and keys etc... running this again will mean you will have to rebuild everything
and update tiny-tam copies of the crypto etc using the new pki.

2.3.3 Step 3: run the test script

Run the test script like this
$ LWS_-BUILD.DIR=/path/to/libwebsockets/build ./scripts/otrp-test.sh

You should see output like this

[2019/01/03 19:13:10:0065] USER: LWS X509 api example

[2019/01/03 19:13:10:0067] NOTICE: lws_x509_public.to.-jwk: RSA key
[2019/01/03 19:13:10:0123] NOTICE: Issuing Cert + Private JWK on stdout
[2019/01/03 19:13:10:0123] NOTICE: main: OK

[2019/01/03 19:13:10:0135]) USER: LWS X509 api example

[2019/01/03 19:13:10:0137] NOTICE: lws_x509_public_.to.jwk: RSA key
[2019/01/03 19:13:10:0137] NOTICE: Issuing Cert Public JWK on stdout
[2019/01/03 19:13:10:0138] NOTICE: main: OK

[2019/01/03 19:13:10:0243] USER: LWS JWK example

[2019/01/03 19:13:10:0244] NOTICE: lws_jwk_generate: generating 4096 bit RSA key
[2019/01/03 19:13:10:6649] USER: LWS JWE example tool

[2019/01/03 19:13:10:6703] USER: LWS JWS example tool

[2019/01/03 19:13:10:6942] USER: LWS JWS example tool

[2019/01/03 19:13:10:6989] NOTICE: VALID

[2019/01/03 19:13:10:7002] USER: LWS JWE example tool

Decrypted TA matches original

Running ot rp-test . sh doesn't change the pki, so you can run it as many times as you like.

Copyright © National Institute of Advanced Industrial Science and Technology (AIST)

	1 OTrP Overview
	1.1 Normative docs
	1.2 Working overview diagram
	1.3 TA Encryption
	1.4 OTrP PKI
	1.5 OTrP sources layout
	1.6 OTrP test flow
	1.6.1 Install Test TA flow
	1.6.2 Confirm Test TA is installed
	1.6.3 Delete Test TA flow
	1.6.4 Confirm Test TA deleted

	2 Notes on PKI config
	2.1 One-time PKI setup
	2.2 PKI layout
	2.3 Converting and using JWK/E/S manually
	2.3.1 Step 1: build libwebsockets with mbedtls
	2.3.2 Step 2: run the pki kickstart script
	2.3.3 Step 3: run the test script

